GCE 2005

January Series

OUALIFICATIONS
ALLIANCE

Mark Scheme

Mathematics

MM1B

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website:
www.aqa.org.uk
Copyright © 2005 AQA and its licensors. All rights reserved.

[^0]MM1B

MM1B (cont)

Q	Solution	Marks	Total	Comments
$4(\mathrm{a})$ (b)	Light or smooth	B1	1	Acceptable assumption
	$5 g-T=5 a$	M1		Three term equation of motion for one particle
	$T-2 g=2 a$	A1		Correct equation
	$\begin{aligned} & T-2 g=2 a \\ & 3 g=7 a \end{aligned}$	M1		Three term equation of motion for other particle
		A1		Correct equation
	$a=\frac{\mathrm{g}}{7}=4.2 \mathrm{~ms}^{-2}$	A1	5	AG; correct acceleration from correct working
(c)	$T=2 \times 4.2+2 \times 9.8=28 \mathrm{~N}$	M1		Substitute $a=4.2$ into one equation of motion
		A1	2	Correct tension
	Total		8	
5(a)	$200 \sin 30^{\circ}=T \sin 45^{\circ}$	M1		Resolving horizontally
	$T=200 \sin 30^{\circ}$	A1		Correct equation
	$T=\frac{20 \sin 45^{\circ}}{\sin }=141 \mathrm{~N}$	A1	3	AG; correct T from correct working
(b)	$200 \cos 30^{\circ}+141 \cos 45^{\circ}+R=500 \times 9.8$	M1		Resolving vertically with four terms
		A1		Correct values
		A1		Correct signs
	$R=4630 \mathrm{~N}$	A1	4	Correct R
	Total		7	
6(a)	$\underline{\sin 60^{\circ}}=\underline{\sin \alpha}$	M1		Use of sine rule
	6	A1		Correct LHS
	$\alpha=16.8{ }^{\circ}$	A1		Correct RHS
		A1	4	AG; correct α from correct working
(b)	6	M1		use of sine rule to find v
	$\overline{\sin (180-60-16.8)}=\overline{\sin 60^{\circ}}$	A1		Correct equation
	$v=6.74$ or $6.75 \mathrm{~ms}^{-1}$	A1	3	Correct v
	Total		7	

MM1B (cont)

Q	Solution	Marks	Total	Comments
7 (a)	$\begin{aligned} & -\mathbf{i}+\mathbf{j}=2 \mathbf{i}-\mathbf{j}+10 \mathbf{a} \\ & \mathbf{a}=-0.3 \mathbf{i}+0.2 \mathbf{j} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	Use of velocity equation Correct equation Correct a
(b)	$\begin{aligned} & \mathbf{r}=(2 \mathbf{i}-\mathbf{j}) t+\frac{1}{2}(-0.3 \mathbf{i}+0.2 \mathbf{j}) t^{2}+20 \mathbf{i} \\ & =\left(2 t-0.15 t^{2}+20\right) \mathbf{i}+\left(-t+0.1 t^{2}\right) \mathbf{j} \end{aligned}$	M1 A1 A1 ft	3	Use of constant acceleration equation for position Correct i component Correct j component ft incorrect acceleration
(c) (i)	$\begin{gathered} \mathbf{r}(20)=\left(2 \times 20-0.15 \times 20^{2}+20\right) \mathbf{i}+\left(-20+0.1 \times 20^{2}\right) \mathbf{j} \\ =0 \mathbf{i}+20 \mathbf{j} \end{gathered}$	M1		Substituting $t=20$ into their expression for \mathbf{r}
	so due north of origin	A1	2	Correct conclusion from correct working
(c)(ii)	$\begin{aligned} \mathbf{v}(20) & =2 \mathbf{i}-\mathbf{j}+20(-0.3 \mathbf{i}+0.2 \mathbf{j}) \\ & =-4 \mathbf{i}+3 \mathbf{j} \\ \mathbf{v}(20) & =\sqrt{4^{2}+3^{2}}=5 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { m1 } \\ \text { A1ft } \end{gathered}$	4	Finding velocity at $t=20$ Correct velocity Finding magnitude Correct speed ft incorrect acceleration
	Total		12	
8(a)	Ball is a particle	$\overline{\mathrm{B} 1}$	2	One appropriate assumption
(b)(i)	$\begin{aligned} & 0=12 \sin 40^{\circ}-9.8 t \\ & t=\frac{12 \sin 40^{\circ}}{9.8}=0.787 \mathrm{~s} \end{aligned}$	M1 A1 M1 A1	4	Equation to find time at maximum height Correct equation Solving for t Correct time
(ii)	$\begin{aligned} h & =12 \sin 40^{\circ} \times 0.7871-4.9 \times 0.7871^{2} \\ & =3.04 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	Substituting time from previous into expression for height Correct expression AG; correct height from correct working
(c)	$2.44=12 \sin 40^{\circ} t-4.9 t^{2}$	M1		Equation for time to get to the bar, based on height being 2.44
		A1		Correct LHS
	$4.9 t^{2}-12 \sin 40^{\circ} t+2.44=0$	A1		Correct RHS
	$t=0.4385$ or 1.136	m1		Solving quadratic
		A1		Correct time / times
	$s=12 \cos 40^{\circ} \times 1.136=10.4 \mathrm{~m}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	7	Substituting their larger time into an expression for the horizontal displacement Correct distance
	Total		16	
	TOTAL		75	

[^0]: COPYRIGHT
 AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

 Set and published by the Assessment and Qualifications Alliance.

 The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

